1. Abstract

    Two types of commercial WC-Ni samples were irradiated with the High-intensity pulsed ion beam (HIPIB). Both the surface characteristics and tribo-characteristics of the non-irradiated and irradiated WC-Ni samples, sliding against graphite under water lubrication, were compared. Quite low steady friction coefficients (approximately of 0.02) of the irradiated WC-Ni were observed. The surface topographies and components were investigated. The quite low friction of the irradiated WC-Ni samples was ascribed to the higher fluid retention capability of the latter and the tribofilm formed during sliding.

  2. Abstract

    The objective of this work is to investigate the influence of contact pressure and sliding speed on the coefficient of friction and wear of an activated carbon-epoxy composite derived from palm kernel under dry sliding conditions. A wear mode map approach was employed to identify the transitions from mild to severe wear of the composite. The dry sliding test was executed by utilizing a ball-on-disc tribometer at different contact pressures and sliding speeds with a constant sliding distance and operating temperature. The results showed that, regardless of the sliding speed, the friction coefficient and wear rate of the composite increased drastically when a critical limit of contact pressure is exceeded. As for the sliding speed, both the friction coefficient and wear rate increased first and thereafter decreased at a higher speed of 500 rpm. A wear mode map is proposed to classify the boundary from mild to severe wear regimes. The predominant wear failures identified include micro-crack, fine grooves, debonding, delamination, debris, broken carbon, and fracture.

  3. Abstract

    Efficient and sustainable use of water-based lubricants is essential for energy efficiency. Therefore, the use of water-lubricated mechanical systems instead of conventional oil lubricants is extremely attractive from the viewpoint of resource conservation. In this study, water-soluble Cu nanoparticles of size approximately 3 nm were prepared at room temperature (around 25 °C) via in-situ surface modification. The tribological behavior of the as-synthesized Cu nanoparticles as an additive in distilled water was evaluated using a universal micro-tribotester. The results show that the as-synthesized Cu nanoparticles, as a water-based lubricant additive, can significantly improve the tribological properties of distilled water. In particular, the lowest friction coefficient of 0.06 was obtained via lubrication with a concentration of 0.6 wt% of Cu nanoparticles in distilled water, which is a reduction of 80.6% compared with that obtained via lubrication with distilled water alone. It is considered that some Cu nanoparticles entered the contact area of the friction pairs to form a complex lubricating film and prevent direct contact of the friction pairs. Furthermore, some Cu nanoparticles in the solution accelerate the heat transfer process, which also results in good tribological properties.

  4. Abstract

    Two-dimensional materials having a layered structure comprise a monolayer or multilayers of atomic thickness and ultra-low shear strength. Their high specific surface area, in-plane strength, weak layer-layer interaction, and surface chemical stability result in remarkably low friction and wear-resisting properties. Thus, 2D materials have attracted considerable attention. In recent years, great advances have been made in the scientific research and industrial applications of anti-friction, anti-wear, and lubrication of 2D materials. In this article, the basic nanoscale friction mechanisms of 2D materials including interfacial friction and surface friction mechanisms are summarized. This paper also includes a review of reports on lubrication mechanisms based on the film-formation, self-healing, and ball bearing mechanisms and applications based on lubricant additives, nanoscale lubricating films, and space lubrication materials of 2D materials in detail. Finally, the challenges and potential applications of 2D materials in the field of lubrication were also presented.

  5. Abstract

    Highly nanotwinned (NT) metals have advantages such as high strength, good ductility, favorable corrosion resistance, and thermal stability. It has been demonstrated that the introduction of high density NT microstructures can enhance the tribological properties of metals. However, the influence of the microstructure and the composition of NT alloys on the tribological behavior are not clear. In this work, the sliding wear behavior of fully NT materials, specifically Cu-Al and Cu-Ni alloys, are studied by a nanoscratch technique using a nanoindenter. The effects of microstructure and chemical composition on the wear properties are also studied. The results show that the chemical composition has an obvious influence on the wear resistance and microstructural deformation. For NT Cu-Al alloys, the hardness and sliding wear resistance improve with increased Al content from Cu-2wt.%Al to Cu-6wt.%Al. NT Cu-10wt.%Ni alloy shows even better wear resistance than Cu-6wt.%Al. The microstructural analysis shows that NT Cu alloys with higher wear resistance correspond to a smaller deformation-affected zone. The improvement of sliding wear properties of Cu-Al alloys with higher Al content may be ascribed to their decreased stacking fault energy. NT Cu-Ni alloy shows better wear resistance than Cu-Al alloy, this may be related to the formation of intermetallic compounds in Cu-Al system. This study broadens the knowledge about tribological properties of NT materials and provides a potential method to optimize their sliding wear resistance by altering the chemical composition of NT Cu alloys.

  6. Abstract

    In this paper, the friction behavior at a pin-to-plate interface is investigated. The pin and plate are made of Polytetrafluoroethylene (PTFE) and steel, respectively, and there is a reciprocating motion at the interface. Governing mathematical models for the relations of design variables and frictions are investigated, and a general procedure is proposed to solve the developed models and predict the friction forces at the interface subjected to given test conditions. Novel models have been developed to represent intrigued friction behaviors affected by various factors such as pin geometrics and finishes, lubrication conditions, and reciprocating speed. The test data from experiments is used to verify the effectiveness of the proposed models.

  7. Abstract

    The ionic liquid (IL) tributylmethylammonium bis(trifluoromethylsulfonyl)amide ([N4441][NTf2]) was used as neat lubricant and as an additive (1.5 wt%) in a polar oil to study its friction and wear reducing properties. Tribological tests were completed for 90 minutes at room temperature and 100 °C in a reciprocating configuration at loads of 30 and 70 N, 10 Hz-frequency, and 4 mm stroke length. Wear volume was measured by confocal microscopy and the surface-IL interaction determined by XPS. The main findings were that neat IL showed the best tribological behavior; the IL-containing mixture behaved similar to the base oil regarding friction, however outperformed the antiwear behavior of the base oil under higher temperature; surface-IL chemical interaction was found mainly at 100 °C.

  8. Abstract

    The objective of this study was to investigate the grease-lubricated film-forming mechanisms in the finite line contact and to improve the grease-lubricated finite line contact’s film-forming capacity. An elastohydrodynamic lubrication (EHL) test rig with two interferometry microscopes, which could simultaneously monitor two different contact locations in the finite line contact, was constructed in order to study the influences of the grease thickener formulation on the film thickness and lubrication condition. By using the relative light intensity method, the thickness maps of the grease-lubricated film were calculated from the interferometer images captured by the two microscopes. The test results revealed that the grease thickener’s formulation had remarkable effects on film formation and the perturbation of film thickness. For the lithium-based grease, the film’s thickness near the two ends of the roller was prone to severe perturbation caused by the conglomeration of clumps that were hard to shear. For the aluminum-complex-based grease, the fibers tended to accumulate in the middle of the roller rather than at the two ends. The urea-based grease could be easily sheared into smaller particles. In addition to the straight-line profile rollers, the logarithmic profile rollers were tested and found to effectively enhance the axial grease flow, increase the axial shear stress, and thus shear more fibers into particles within the contact area.

  9. The article “Study on contact fatigue of a wind turbine gear pair considering surface roughness”, written by Heli LIU, Huaiju LIU, Caichao ZHU, Zhangdong SUN, Houyi BAI, was erroneously originally published online without open access. After online first publication this was corrected and the article is now an open access publication. The article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The original article has been corrected.

  10. Abstract

    Despite excellent tribological behaviors of ionic liquids (ILs) as lubricating oils, their friction-reducing and anti-wear properties must be improved when they are used under severe conditions. There are only a few reports exploring additives for ILs. Here, MoS2 and WS2 quantum dots (QDs, with particle size less than 10 nm) are prepared via a facile green technique, and they are dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm]PF6), forming homogeneous dispersions exhibiting long-term stabilities. Tribological test results indicate that the addition of MoS2 and WS2 QDs in the IL can significantly enhance the friction-reducing and anti-wear abilities of the neat IL under a constant load of 500 N and a temperature of 150 °C The exceptional tribological properties of these additives in the IL are ascribed to the formation of protective films, which are produced not only by the physical absorption of MoS2 and WS2 QDs at the steel/steel contact surfaces, but also by the tribochemical reaction between MoS2 or WS2 and the iron atoms/iron oxide species.

  11. Abstract

    In this study, SU-8 and its composites are fabricated by blending 10 wt.% hexagonal boron nitride (h-BN) fillers with/without lubricants, such as 10 wt.% base oil (SN150) and 20 wt.% perfluoropolyether (PFPE). The thickness of SU-8 and its composites coating is fabricated in the range ∼100–105 ±m. Further, SU-8 and its composites are characterized by a 3D optical profilometer, atomic force microscopy, scanning electron microscopy, a thermal gravimetric analyzer, a goniometer, a hardness tester, and an optical microscope. Under a tribology test performed at different normal loads of 2, 4, and 6 N and at a constant sliding speed of 0.28 m/s, the reduction in the initial and steady-state coefficient of friction is obtained to be ∼0.08 and ∼0.098, respectively, in comparison to SU-8 (∼0.42 and ∼0.75), and the wear resistance is enhanced by more than 103 times that of pure SU-8. Moreover, the thermal stability is improved by ∼80–120 °C, and the hardness and elastic modulus by ∼3 and ∼2 times that of pure SU-8, respectively. The SU-8 composite reinforced with 10 wt.% h-BN and 20 wt.% PFPE demonstrated the best thermo-mechanical and tribological properties with a nano-textured surface of high hydrophobicity.

  12. Abstract

    This study deals with the development of drum brake liner for a multi-utility vehicle possessing a hydraulic brake system by varying 7 weight % of steel fiber and stainless steel fiber each, in friction composite formulations. The developed friction composites were tested for physical, chemical, corrosion, mechanical, thermal properties, and tribological characteristics, under near-actual conditions using an inertia dynamometer as per industrial standards. Finite element analysis software (ANSYS) analysis was performed to show the thermal stress distribution of the developed friction composites at the maximum temperature rise due to heat generated during brake stops, and an extensive evaluation method was used to rank the composites. The study concludes that the brake factor of the stainless steel fiber-based friction composite produces stable performance in all conditions with a lower liner temperature rise of 340 °C and lower thermal stress at 4.255294 MPa. However, the steel fiber-based composites produced high performance at the beginning but deteriorated after a certain period due to higher levels of corrosion and a high temperature rise of 361 °C resulting in a negative fade (−0.84%) and more thermal stress (5.619102 MPa). The primary plateau, secondary plateau, back transfer of drum wear debris, and the distribution of constituents on the worn surface of the developed composites in a resin matrix were identified and studied using a scanning electron microscope (SEM) equipped with energy-dispersive spectroscopy.

  13. Abstract

    Lubrication and friction conditions vary with deformation during metal forming processes. Significant macro-variations can be observed when a threshold of deformation is reached. This study shows that during the cold compression processing of #45 (AISI 1045) steel rings, the magnitude of friction and surface roughness (Ra) changes significantly upon reaching a 45% reduction in ring height. For example, the Ra of compressed ring specimens increased by approximately 55% immediately before and after reaching this threshold, compared to an 18% or 25%variation over a 35%-45% or a 45%-55% reduction in height, respectively. The ring compression test conducted by this study indicates that the Coulomb friction coefficient μ and Tresca friction factor m are 0.105 and 0.22, respectively, when the reduction in height is less than 45%; and 0.11 and 0.24, respectively, when the reduction in height is greater than 45%.

  14. Abstract

    Contact fatigue issues become more and more crucial in gear industry as they significantly affect the reliability and service life of associated mechanical systems such as wind turbine gearboxes. The contact fatigue behavior is mostly determined by the mechanical properties of materials and stress fields near the contact area, which is further influenced by the lubrication and surface roughness due to pressure fluctuations. In this study, a numerical model incorporating the lubrication state, tooth surface roughness, residual stress, and mechanical properties of the material is developed to determine the contact fatigue behavior of a megawatt level wind turbine carburized gear. The variations of the hardness and residual stress along the depth were characterized by the Vickers hardness measurement and X-ray diffraction test, respectively. The elastohydrodynamic lubrication theory was applied to predict the contact pressure distribution, highlighting the influence of the surface roughness that stemed from the original measurement through an optical profiler. The stress histories of the studied material points during a complete contact loading cycle were fast calculated using the discreteconcrete fast Fourier transformation (DC-FFT) method. Modified Dang Van diagrams under different working conditions were determined to estimate the contact fatigue failure risk. The effect of the root mean square (RMS) value of the surface roughness on the failure risk at critical material points were discussed in detail. Results revealed that the surface roughness significantly increases the contact fatigue failure risk within a shallow area, and the maximum risk appears near the surface.

  15. Abstract

    The paper presents an explicit matrix algorithm to solve the problem of an elastic wedge with three loaded surfaces. The algorithm makes use of a recently published concept of transformation matrix, by which the original surface loads are converted to equivalent loads in half-space. The three loaded edges are considered simultaneously. The developed algorithm is used to study the effects of two free edges of a steel block and tapered rollers with different contact angles. The two load-free edges can substantially increase deformation if the two edges are close in distance. The results of the tapered roller simulation show that deformation is considerably sensitive to the contact angle of the tapered roller. The largest deformation appears at the big end of the roller. Furthermore, empirical formulae for correction factors for the calculation of block or quarter-space deformation based on half-space solutions are summarized.

  16. Abstract

    A structured transdisciplinary method for the experimental determination of friction in the nanometric domain is proposed in this paper. The dependence of nanoscale friction on multiple process parameters on these scales, which comprise normal forces, sliding velocities, and temperature, was studied via the lateral force microscopy approach. The procedure used to characterize the stiffness of the probes used, and especially the influence of adhesion on the obtained results, is thoroughly described. The analyzed thin films were obtained by using either atomic layer or pulsed laser deposition. The developed methodology, based on elaborated design of experiments algorithms, was successfully implemented to concurrently characterize the dependence of nanoscale friction in the multidimensional space defined by the considered process parameters. This enables the establishment of a novel methodology that extends the current state-of-the-art of nanotribological studies, as it allows not only the gathering of experimental data, but also the ability to do so systematically and concurrently for several influencing variables at once. This, in turn, creates the basis for determining generalizing correlations of the value of nanoscale friction in any multidimensional experimental space. These developments create the preconditions to eventually extend the available macro- and mesoscale friction models to a true multiscale model that will considerably improve the design, modelling and production of MEMS devices, as well as all precision positioning systems aimed at micro- and nanometric accuracy and precision.

  17. Abstract

    The wear characteristics of Cu and Cu-SiC composite microsize powders consolidated by cold compaction combined with sintering or high-pressure torsion (HPT) were investigated. The HPT processed (HPTed) samples with bimodal and trimodal microstructures and fine Cu grains and SiC particle sizes have superior hardness, reasonable ductility level, and high wear resistance. The wear mass loss and coefficient of friction of HPTed samples were remarkably lower than that of cold-compacted and sintered samples as well as that of micro and nano Cu and Cu-SiC composites from previous studies. The sample fabrication method has an apparent influence on the wear mechanism. The wear mechanism was converted from adhesive, delamination, three-body mechanism, grooves (take off the SiC particles), and cracks into abrasive wear after HPT. Oxidization can be considered a dominant wear mechanism in all cases. The worn surface morphology and analysis support the relationship between wear mechanism and characteristics.

  18. Abstract

    Two-dimensional (2D) lamellar materials have unique molecular structures and mechanical properties, among which molybdenum disulfide (MoS2) and graphitic carbon nitride (g-C3N4) with different interaction forces served as reinforcing phase for polytetrafluoroethylene (PTFE) composites in the present study. Thermal stability, tribological and thermomechanical properties of composites were comprehensively investigated. It was demonstrated that g-C3N4 improved elastic deformation resistance and thermal degradation characteristics. The addition of g-C3N4 significantly enhanced anti-wear performance under different loads and speeds. The results indicated that PTFE composites reinforced by g-C3N4 were provided with better properties because the bonding strength of g-C3N4 derived from hydrogen bonds (H-bonds) was stronger than that of MoS2 with van der Waals force. Consequently, g-C3N4 exhibited better thermomechanical and tribological properties. The result of this work is expected to provide a new kind of functional filler for enhancing the tribological properties of polymer composites.

  19. Abstract

    In this study, CoCrFeNiTi0.5Alx high-entropy alloys were produced by induction melting and their dry sliding wear behavior was examined at different temperatures. In addition to face-centered cubic (FCC) phases, low amounts of a tetragonal phase were detected in the microstructures of alloys without Al and microscratches were formed by wear particles on the worn surfaces of the alloy specimens. Two body-centered cubic (BCC) phases were detected in the alloy with 0.5Al and a fatigue-related extrusion wear mechanism was detected on the worn surface. The alloy specimen with a high Al content exhibited the best wear characteristics. No wear tracks were formed in single-phase BCC intermetallic alloys at room temperature and they exhibited a higher wear strength at high temperatures when compared to other samples.

  20. Abstract

    An oil soluble multifunctional protic ionic liquid (IL) was synthesized and its tribological and antioxidant properties in poly alpha olefin (PAO4) were investigated. The tribological results demonstrated that the IL significantly reduced friction and wear of PAO4. The PAO4 blend with IL resulted in an induced oxidation time of 555 min which is 8.2 and 3.5 times higher than that of pure PAO4 and PAO4 with zinc dialkyl dithiophosphate (ZDDP) for the rotating pressure vessel oxidation test. It is likely that free nonylated diphenylamine acted as a radical scavenger to enhance antioxidant performance, while free bis(2-ethylhexyl) phosphate was more prone to adsorb and react with the metal surface to form a phosphorus-rich tribofilm in order to protect the rubbing surface.